Electrochemical Synthesis of Core–Shell-Structured NbC–Fe Composite Powder for Enforcement in Low-Carbon Steel

نویسندگان

  • Hongmei Li
  • Qiushi Song
  • Qian Xu
  • Ying Chen
  • Liang Xu
  • Tiannan Man
چکیده

An NbC-Fe composite powder was synthesized from an Nb₂O₅/Fe/C mixture by electrochemical reduction and subsequent carbonization in molten CaCl₂-NaCl. The composite has a core-shell structure, in which NbC acts as the cores distributing in the Fe matrix. A strong bonding between NbC and Fe is benefit from the core-shell structure. The sintering and electrochemical reduction processes were investigated to probe the mechanism for the reactions. The results show that NbC particles about several nanometers were embraced by the Fe shell to form a composite about 100 nm in size. This featured structure can feasibly improve the wettability and sinterability of NbC as well as the uniform distribution of the carbide in the cast steel. By adding the composite into steel in the casting process, the grain size of the casted steel was markedly deceased from 1 mm to 500 μm on average, favoring the hardening of the casted steel.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrooxidation of Formic Acid and Formaldehyde on the Fe3O4@Pt Core-Shell Nanoparticles/Carbon-Ceramic Electrode

In the present work, the electrooxidation of formic acid and formaldehyde; potentially important fuels for future fuel cells, was investigated on the Fe3O4@Pt core-shell nanoparticles/carbon-ceramic electrode (Fe3O4@Pt/CCE). The Fe3O4@Pt nanoparticles were prepared via a simple and fast chemical method and their surface morph...

متن کامل

Core–shell titanium dioxide /carbon nanofibers decorated nickel nanoparticles as supports for electrocatalytic oxidation of ethanol

Abstract Recently alcohol fuel cells has been increased consideration because of their environmental friendliness, high energy conversion efficiency and low emissions. Many effort have been made to improve the electro-oxidation performance of alcohols such as methanol, ethanol and propanol. In this work, a new method for ethanol oxidation based on core–shell titanium dioxide / carbon nanofib...

متن کامل

Synthesis of Polypyrrole/CeO2 Nanocomposite and its Application for Improving the Corrosion Protection of Acrylic Waterborne Coating on Mild Steel

In this work, polypyrrole/CeO2 nanocomposite (NC) was synthesized in the presence of methylorange as a reactive self-degraded soft template. The field emission scanning electron microscopy(FESEM) images indicate that the CeO2 NPs have a nucleus effect and cause a homogenous PPycore–shell type morphology with an encapsulation of the CeO2 core by the PPy shell. The effect ofNC on acrylic waterbor...

متن کامل

Synthesis oF Fe-TiC Hard Coating From Ilmenite via Laser Cladding

The aim of this work was to synthesize TiC reinforced coating on carbon steel via reduction of ilmenite powder. A mixture of ilmenite and graphite was pre-placed on AISI 1020 steel surface. The effect of the addition of excess graphite amounts on the progress of synthesis of carbide particles was studied. The evolution of phases in different coatings was analysed via X-ray diffraction and scann...

متن کامل

Voltammetric Determination of Tryptophan Using a Carbon Paste Electrode Modified with Magnesium Core Shell Nanocomposite and Ionic Liquids

A novel carbon paste electrode modified with ionic liquid (n-hexyl-3-methylimidazolium hexafluoro phosphate) and magnetic core-shell manganese ferrite nanoparticles (MCSILCPE) was fabricated. The electrochemical study of the modified electrode, as well as its efficiency for electro-oxidation of tryptophan, is described. Cyclic voltammetry (CV), choronoamperometry (CHA) and square wave voltammet...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2017